

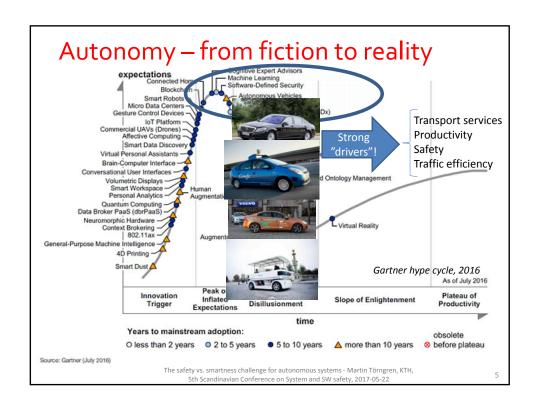
Workshop program

13.00 - 14.10: **Presentations**

- Workshop introduction, Martin Törngren (KTH) and Viktor Kaznov (Scania)
- Safety Considerations when preparing for autonomy in the automotive domain, Masoumeh Parseh, KTH
- Challenges for ensuring functional safety for connected autonomous vehicles, Fredrik Warg,
 SP
- Open issues for monitoring architectures, Jeremie Guichet, LAAS
- Architecting autonomous vehicles, Naveen Mohan, KTH
- Safety Assurance Argument Strategies for Vehicle Autonomy, John Birch, HORIBA MIRA

14.10-14.30: Break

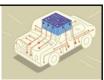
14.30-16.15: World café sessions with 4 themes:


- Safety analysis (chair: Sofia Cassel)
- Supervisor architectures (chairs: Jeremie Guichet/Lola Masson)
- Architecting autonomous vehicles (chair: Naveen Mohan)
- Safety assurance (chair: John Birch)

16.15-17.00: Short summaries and wrap up

- Summaries per table (by Table chair)
- Wrap-up

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22



Autonomy related perspectives - a rich socio-technical area! Lifecycle and usage context **ITS and infrastructure Societal aspects Properties** Legislation Methodology & Autonomy **Technology Business cases/Drivers Human-centric** Organizational Innovative products concerns and services aspects The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

Outline

- What is special with autonomy in the automotive sector?
- Safety for autonomous driving
 - Key open questions
 - Analysis and promising directions
- Conclusions

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

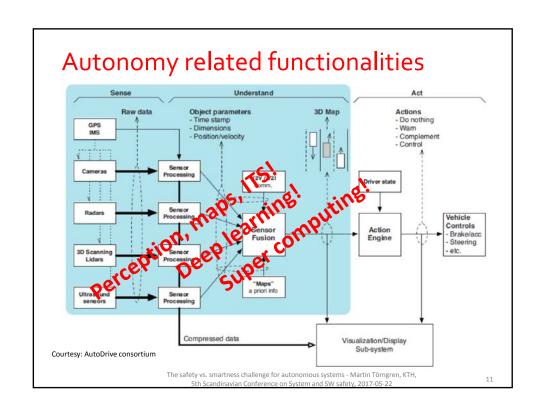
Ω

"Purely" mechanical vehicle

	Susp	Brake	Steer	Wheel	Diff	Trans	Clutch	Eng	Driver
Susp				Х					Х
Brake				Х					Х
Steer				Х					Х
Wheel	Х	Х	Х		Х				
Diff				Х		Х			
Trans					Х		Х		
Clutch						Х		Х	Х
Eng							Х		
Driver		Х	Х				Х		

X - Mechanical relations

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

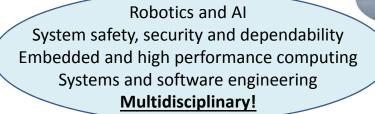


Fully programmable vehicle!

	Susp	Brake	Steer	Wheel	Diff	Trans	Clutch	Eng	Driver
Susp		P	P	X+P	P	P	P	P	X+P
Brake	P		P	X +P	P	P	P	P	<i>X</i> +P
Steer	P	P		<i>X</i> +P	P	P	P	P	<i>X</i> +P
Wheel	X	X	<i>X</i> +P		X				
Diff	P	P	P	<i>X</i> +P		<i>X</i> +P	P	P	
Trans	P	P	P	P	<i>X</i> +P		<i>X</i> +P	P	P
Clutch		P	P		P	<i>X</i> +P		<i>X</i> +P	P
Eng	P	P	P	P	P	P	<i>X</i> +P		P
Driver	P	<i>X</i> +P	<i>X</i> +P		P	P	<i>X</i> +P	P	

P - Programmable relations
X - Possible change

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22



Automotive melting pot

• Electrification and new power sources

- Servitization and DevOps
- Automation/autonomy

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH 5th Scandinavian Conference on System and SW safety, 2017-05-22 12

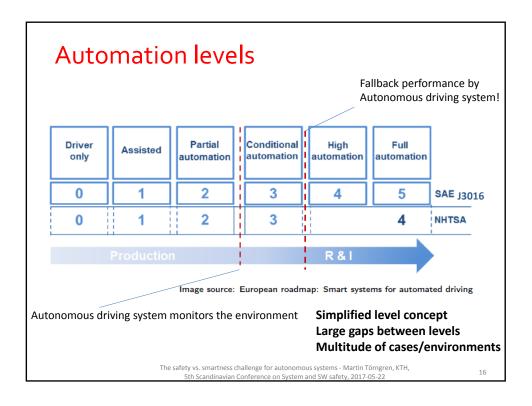
Autonomy in the automotive sector compared to more mature domains?

- Cars in everyone's hand
 - Most complex consumer electronics product
- Largely "uncontrolled" setting
 - "Untrained" users
 - "Unregulated" domain
 - Larger set of usages, scenarios and business cases
 In contrast to e.g. MedTech, Aerospace, ...
- Highly integrated systems
 - Bottom-up growth, weak systems engineering

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH 5th Scandinavian Conference on System and SW safety, 2017-05-22

Outline

- What is special with autonomy in the automotive sector?
- Safety for autonomous driving
 - Key open questions
 - Analysis and Promising directions
- Conclusions


The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

1.1

Key open questions

- Reasoning about and regulating autonomy
- Requirements?
 - What are acceptable levels of risk?
- Safety concerns for advanced perception, planning and control
 - Dealing with AI, uncertainty and complexity
 - Safety practices/standards and architectural concerns
- Autonomous vehicles in Intelligent transportation systems
 - Safety and dependability in Systems of Systems!

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH 5th Scandinavian Conference on System and SW safety, 2017-05-22

NHTSA guidelines

NHTSA requests manufacturers to provide reports responding to the guidance (mandatory in e.g. California). The Safety Assessment initially covers the following areas:

- Data Recording and Sharing
- Privacy
- System Safety
- Vehicle Cybersecurity
- Human Machine Interface
- Crashworthiness
- Consumer Education and Training
- Registration and Certification

https://www.nhtsa.gov/technology-innovation/automated-vehicles

- Post-Crash Behavior
- · Federal, State and Local Laws
- Ethical Considerations
- Operational Design Domain
- Object and Event Detection and Response
- Fall Back (Minimal Risk Condition)
- Validation Methods

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

Requirements – acceptable risk level? How much better should "robo-cars" be?

- Fatalities saved vs. People killed by robo-cars?
- Human performance?
 - Approx. 1 fatality per 160 million km's (US statistics)
 - Typical driver crashes once every 257000 km (~ every 12 years, US statistics)
- Societal, ethical, legal, insurance considerations across cases & countries
 - Adjustable risk?!
- Different car maker approaches!?

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH 5th Scandinavian Conference on System and SW safety, 2017-05-22 18

Safety concerns and implications (I)

- How to ensure that the ADI is "better" than a human driver?
- Testing only will not be feasible!
 - Billions of miles of testing are needed to demonstrate their reliability in terms of fatalities and injuries (Rand Corp)
 - What represents meaningful miles?
- Unlimited amounts of scenarios
 - What are suitable safety analysis techniques?
 - Effective and efficient V&V techniques?

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTI-5th Scandinavian Conference on System and SW safety, 2017-05-22

Safety concerns and implications (II)

- Performance and failure modes of machine learning systems
 - Limited transparency and understanding!
- Amodei et al. Concrete Problems in Al Safety (2016)
 - Extrapolation from limited training data or using an inadequate model
 - Mis-specification of the objective function
 - E.g. negative side-effects
- Stating goals and constraints appropriately
- Robustness considering limited training data

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

20

Safety concerns and implications (III)

- Safety approach to deal with probabilistic functions including machine learning?
 - Safety: simplicity; predictability; verifiability
- Applicability of best practices from aerospace?
 - Fail-safe states and separation between safety and main control channels?
- Current automotive platforms and functions typically designed to be fail-silent
- Life-cycle management, repairs, upgrades, security, ...

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTI-5th Scandinavian Conference on System and SW safety, 2017-05-22

Outline

- What is special with autonomy in the automotive sector?
- Safety for autonomous driving
 - Key open questions
 - Directions
- Conclusions

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTI-5th Scandinavian Conference on System and SW safety, 2017-05-22 22

Directions (I): Research and engineering

- Robust/adaptive/self-aware perception and robust AI
- Safety and dependability
 - Safety analysis techniques
 - Run time risk management
 - Cost-effective architectures integrated with planning and supervisory control
- Virtual verification + Formal methods + Testing + DevOps

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH, 5th Scandinavian Conference on System and SW safety, 2017-05-22

Directions (II): Safety and availability

	Safety	Availability
Deliberation	Safety related!	High requirements, use-case dependence
Degraded operation	Highly critical safety function (availability)	Required to reach fail- safe state
Reactive/active safety	Highly critical safety function (commission failures, availability)	FS → FO Higher requirements than today

Architectural concepts and considerations:

- Supervisors; Inherent redundancy; integration with existing platforms
- Safety/availability trade-off
- Constraints/decisions for degrading and shutting down

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH,

24

Directions (III): Safety standards evolution

Quest: to provide guidance on how safety-related sensors and perception can achieve the required integrity

- means for reducing risk, validation, acceptance criteria
- beyond guidance in current functional safety standards
- IEC 61508 and IEC 62998 CD
 - IEC 62998 to address in particular guidance for safetyrelated sensors used for protection of person
- ISO26262 and SOTIF
 - SOTIF to provide guidance regarding special "functional" failure modes, e.g. complex perception

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH 5th Scandinavian Conference on System and SW safety, 2017-05-22

Take aways - the safety vs. smartness challenge for autonomous systems

- Autonomy provides a disruptive change for vehicles
 - Great opportunities for new safe and green systems
 - Strong economical drivers and socio-technical impact
- Challenges
 - Unclear requirements but even more unclear how to ensure that the ADI performs better than humans
 - Dealing with AI, uncertainty and complexity
 - Safety practices/standards and architectural concerns
- Collaboration across multiple stakeholders needed!
- Excellent example of Cyber-Physical Systems evolution
 - Similar challenges will appear in other domains!

ARCHER

The safety vs. smartness challenge for autonomous systems - Martin Törngren, KTH,

5th Scandinavian Conference on System and SW safety, 2017-05-22